선형대수학 Linear Algebra |
|||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
<colbgcolor=#006ab8> 기본 대상 | 일차함수 · 벡터 · 행렬 · 선형 변환 | |
대수적 구조 | 가군(모듈) · 벡터 공간 · 내적 공간 · 노름 공간 | ||
선형 연산자 | <colbgcolor=#006ab8> 기본 개념 | 연립방정식( 1차 · 2차) · 행렬곱 · 단위행렬 · 역행렬과 크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식( 라플라스 전개) · 주대각합 | |
선형 시스템 | 기본행연산과 기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법 | ||
주요 정리 | 선형대수학의 기본정리 · 차원 정리 · 가역행렬의 기본정리 · 스펙트럼 정리 | ||
기타 | 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환 · 노름(수학) | ||
벡터공간의 분해 | 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화( 대각행렬) · 삼각화 · 조르당 분해 | ||
벡터의 연산 | 노름 · 거리함수 · 내적 · 외적( 신발끈 공식) · 다중선형형식 · ∇ · 크로네커 델타 | ||
내적공간 | 그람-슈미트 과정 · 수반 연산자( 에르미트 내적) | ||
다중선형대수 | 텐서 · 텐서곱 · 레비치비타 기호 | }}}}}}}}} |
1. 개요
spectral theorem선형변환 [math(T)]의 스펙트럼(spectrum) [math(\sigma(T))]은 [math(T - \lambda I)]가 비가역인 복소수 [math(\lambda)]의 집합으로 정의된다. 보통 선형대수학의 유한차원 벡터공간이면 이는 고유값의 모음과 일치하지만, 무한 차원의 경우 좀더 넓은 의미가 된다. 스펙트럼 정리는 [math(T)]가 특정 형태의 작용소일 때 그 스펙트럼을 결정하는 정리로 여러 가지 버전이 있다.
2. 행렬에 대한 스펙트럼 정리
행렬의 스펙트럼 정리는 정규 연산자(normal operator) [math(T T^* = T^* T )]에 대해 다음을 말해준다.정규연산자 [math(T)]는 유니터리 대각화가 가능하다. 즉 대각행렬 [math(D)]와 유니터리 행렬 [math(U)]에 대해 [math(T = U D U^*)] 로 쓸 수 있다.
정규연산자의 일종인 다음 연산자들은 이에 추가적인 성질이 붙는다.
에르미트 연산자의 경우 [math(D)]의 원소는 실수이다.
유니터리 연산자의 경우 [math(D)]의 원소는 절대값 1을 가진다.
자기수반 연산자(대칭행렬)의 경우 [math(D,U)]를 모두 실행렬로 놓을 수 있다.
유니터리 연산자의 경우 [math(D)]의 원소는 절대값 1을 가진다.
자기수반 연산자(대칭행렬)의 경우 [math(D,U)]를 모두 실행렬로 놓을 수 있다.
직교 연산자의 경우는 약간 다른 형태로 정리가 성립한다.
직교 연산자는 전체 공간을 상호직교하는 1차원/2차원 불변공간의 직합으로 분해하고, 따라서 직교행렬 [math(U)]가 존재해 [math( U^t T U )]가 1, -1 또는 2*2 회전행렬들로 이루어진 블록 대각행렬이 되게 만들 수 있다.
각각을 참조하고 싶을 때는 '~~~연산자에 대한 스펙트럼 정리' 로 지칭하면 된다. 자세한 증명은 수반 연산자 항목을 참고.
보통 에르미트 행렬, 대칭행렬과 직교행렬 버전이 많이 쓰인다. 대칭행렬 버전은 일반적인 이차식을 대각화하거나 특이값 분해(singular value decomposition)를 설명하는 등 선형대수학의 응용에서 쉴틈없이 활용된다. 직교행렬 버전을 사용하면 행렬식 1의 모든 3차원 직교변환은 한 축을 기준으로 한 회전밖에 없음을 알 수 있다.
3. 함수해석학에서의 스펙트럼 정리
힐베르트 공간 위에서 역시 수반연산자를 정의할 수 있으므로, 정규연산자, 에르미트 연산자, 유니터리 연산자 등을 모두 정의할 수 있다. 정규연산자 중 컴팩트 연산자(compact operator) [1]에 대해서는 다음이 성립한다.
정규 컴팩트 연산자 [math(T)]는 항상 [math( Tx = \sum_{i=1}^{\infty} \lambda_i \langle x, u_i\rangle u_i )] 로 쓸 수 있다. 여기서 [math( \{u_i\})]는 힐베르트 공간의 직교기저, [math(\{ \lambda_i\} )]는 절대값이 단조감소하고 0으로 수렴하는 복소수 수열이다.
에르미트 컴팩트 연산자의 경우 [math( \lambda_i )]들은 실수이다.
에르미트 컴팩트 연산자의 경우 [math( \lambda_i )]들은 실수이다.
컴팩트 연산자가 아닌 일반적인 연산자(보통 bounded operator라 부른다)와 심지어는 실제로는 연산자도 아닌 unbounded operator에서도 스펙트럼 정리가 있지만, 무한차원에서 도대체 직교대각화가 무엇을 의미하냐를 일반적으로 설명하려면 르벡 적분이니 resolution of identity니 수학과 대학원에서나 볼 수 있는 초고급 개념들이 튀어나온다. 단순히 표현하면 스펙트럼에 대해서는 행렬의 경우와 거의 동일한 내용이 적용된다고 말할 수 있다.
이들은 당연히 함수해석학의 원래 목적인 미분방정식의 풀이에서 사용된다. 예를 들어 스튀름-리우빌 이론(Sturm-Liouville theory)의 2계 미분방정식 [math( -(py')' + qy = f )]은 에르미트 컴팩트 연산자 형태로 바꿔 쓸 수 있다. 위의 스펙트럼 정리를 적용하면 직교기저가 튀어나오고, 마치 푸리에 급수처럼 이들로 [math(f,y)]를 표현해서 문제를 푸는 것이 스튀름-리우빌 이론의 내용.
4. '스펙트럼' 이름의 유래
힐베르트 공간이 나오게 된 양자역학과 관련이 있다. 스펙트럼 중 각 원자가 발생하는 선 스펙트럼은 전자가 가질 수 있는 에너지 준위와 연관된다. 한편 양자역학이 정립되면서 슈뢰딩거 방정식을 풀었을 때 이 에너지 준위는 라플라시안의 고유값으로 튀어나온다는 것이 밝혀졌다. 이 둘을 수학자들이 연관시켜 위의 개념을 작명한 것으로 보통 생각된다. 비유를 하자면 마치 빛을 분해할 때 스펙트럼이 나타나듯이 작용소를 분해해서 나올 수 있는 숫자들로 생각할 수도 있겠다.실제로 라플라시안은 [math(L^2)] 공간의 에르미트 연산자이므로 위의 스펙트럼 정리를 바로 적용할 수 있고, 사실 수소 원자 모형에서 오비탈을 하나하나 나열할 수 있는 것도 이 스펙트럼 정리의 덕택이다.
[1]
단위원의 이미지의 폐포(closure)가 컴팩트인 연산자