1. 정의
變 曲 點 / inflection point어떤 함수의 볼록성과 오목성이 바뀌는 점. 예를 들어 어떤 함수가 변곡점 이전에서는 경사(기울기)가 점점 급해지는 추세였다면 변곡점이 지난 후에는 경사가 점점 완만해지게 된다. (물론 이 반대도 성립한다)
위 그림은 [math(y=x^3-3x^2 )] (파란색 곡선)과 [math(y=1-3x )] (빨간색 직선)을 나타낸 것. [math(x=1)]을 경계로 [math(x<1)]일 때는 함수의 기울기가 감소하는 추세였다면 [math(x>1)]일 때는 점점 증가하고 있으므로 [math((1,\,-2))]은 이 함수의 변곡점이다. 변곡점에서의 접선인 [math(y=1-3x )]는 함수를 완전히 꿰뚫고 있다.[1]
두 번 미분가능한 함수의 경우, 변곡점에서 도함수의 증감이 바뀌며. 이계도함수의 값이 0이 된다. 이 때 주의해야 할 점은 [math(f(x)=0 )]인 지점이라고 꼭 변곡점이라고 할 수는 없다는 것이다. 예를 들어 [math(f(x)=(x-1)^4)]의 경우 [math(f(1)=0)]이지만 함수 [math(y=f(x))] 는 [math(x=1)] 에서 변곡점을 가지지 않는다.([math(x=1)] 양쪽의 [math(f)]의 부호가 같다.)
고등학교 과정에서는 "함수 [math(f)] 가 미분가능한 점 [math(x)] 에서 [math(f(x)=0)]이고 [math(f)]의 [math(x=0)] 좌우에서의 부호가 반대이면 [math(x)]는 변곡점이다"라고 하는데, 이 명제의 역 (conversion)인 "[math(x)]가 변곡점이면 [math(f(x)=0)]이고 [math(f)]의 [math(x=0)] 좌우에서의 부호가 반대이다"는 거짓이다. 실제로 모평에서 이런 낚시가 나왔었다. 어떤 점 [math(x)]에서 [math(f(x)=0)]가 아니더라도 [math(x)]의 좌우에서 [math(f)] 부호가 반대이면 변곡점이다. 도함수가 미분불가능해도 변곡점은 나온다는 소리. 이 경우의 가장 대표적 예시는
[math(\displaystyle \mathit{f}\,(x) \equiv \begin{cases}
x^2& (x > 0) \\
-x^2 & \displaystyle (\textsf{elsewhere})
\end{cases} )]
이 함수의 도함수는 [math(f'(x)=|2x|)]인데 [math( x=0 )]에서 도함수가 미분 불가능하지만(이계도함수가 정의되지 않지만) 변곡점이다 ([math(f'')] 의 [math(x=0)] 좌우에서의 부호가 반대). 다만 고교과정을 벗어나면 변곡점 얘기를 하는 순간 두 번 미분가능하다는 것을 암묵적으로 가정하는 경우가 많다.
함수가 아닌 일반적인 평면 곡선의 경우에도 국소적으로 함수 형태로 보았을 때 변곡점으로 나타나는 점들을 곡선의 변곡점이라 정의할 수 있는데, 이렇게 특정된 변곡점들이 좌표에 의존하지 않고 곡선에 고유하게 결정되기 때문이다. 미분기하의 매끄러운 곡선의 경우 곡률의 부호가 바뀌는 지점, 다항식으로 정의되는 대수곡선의 경우 접선이 접점에서 홀수 중복도(multiplicity)를 가지는 점이 변곡점이 된다.
2. 기타
삼차함수는 변곡점이 존재하는 최소 차수의 다항함수이며, 차수가 다른 다항함수와는 달리 유일하게 가능한 모든 그래프가 변곡점에 대하여 점대칭이다.초등함수 가운데 무한 개의 변곡점을 갖는 함수로 삼각함수가 있다. 모든 삼각함수가 주기함수이기 때문.
비유적 용법으로, 신문 등 각종 대중 매체에서도 가끔 볼 수 있는 말인데, 무언가 중대한 전환점이 와 증감 추세가 바뀌었을 때 주로 쓰인다. 그러나 이 점이 온다고 해도 바로 형국이 전환되지는 않는다. 형국이 전환되는 점이라면 그건 변곡점이 아니라 극점이다.
왜 이렇게 쓰이는지 굳이 추측해 보자면 정확한 수학적 용어보다는 한자 뜻 풀이로 유추하여(변곡→곡선이 변한다) 단어를 새로 창조해내는 측면에서 사용한 것으로 보인다. 그리고 몇몇 사람들이 사용하니까 다른 사람들도 있는 단어인 줄 알고 따라 쓰게 되었을 것이다. '변곡점'이라는 용어는 학창시절 수학을 열심히 공부하지 않았어도 한 번쯤 들어봤을 법한 용어고, 그 특이한 성질 때문에 기억에 오래 남기도 한다. 그래서 수학을 배운 지 오래돼서 기억이 정확히 나지는 않지만 왠지 중요한 점이라는 막연한 생각에 사용되지 않았을까 추측된다.
버벌진트의 정규 7집의 제목이기도 하다.
[1]
함수가 위로 볼록일때는 접선이 함수 위에 있고, 아래로 볼록 일때는 접선이 함수 아래에 있는데, 이 내용과 변곡점의 정의를 생각해보면 변곡점에서의 접선은 함수를 꿰뚫는 다는것을 알 수 있다.