1. 개요
連 鎖 法 則 / chain rule2. 일변수함수
겉미분, 속미분 등의 말로 배우는 '합성함수의 미분'이 바로 연쇄 법칙을 간편한 형태로 적용한 것이다.[math( f )]와 [math( g )]가 미분가능한 함수라고 하자. [math( y=f(u) )]이고 [math( u=g(x) )]일 때, [math( y )]는 [math( x )]로 미분가능하고 다음이 성립한다.
[math(\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} )]
이때 [math(\displaystyle \frac{\mathrm{d}u}{\mathrm{d}x})]를 흔히 속미분이라고 부른다.3. 다변수함수
[math( u )]가 [math( x_1, x_2, \cdots , x_n )]에 대한 미분가능한 [math( n )]변수 함수이고, [math( x_j )]가 각각 [math( t_1, t_2, \cdots , t_m )]에 대한 미분가능한 [math( m )]변수 함수이면, [math( u )]는 [math( t_1, t_2, \cdots, t_m )]에 대한 미분가능한 함수이고, 각 [math( i = 1,2, \cdots , m )]에 대하여 다음이 성립한다.
[math(\displaystyle \frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \cdots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i})]
다변수의 미분을 선형 변환 혹은 행렬로 이해했다면 다음의 버전이 가장 일반적이다.
유클리드 공간의 열린 집합 [math(X, Y, Z)]에 대해 [math(g : X \rightarrow Y)], [math( f : Y \rightarrow Z)]가 각각 점 [math(x_0 \in X)], [math(y_0 = g(x_0))]에서 미분가능할 때, [math( h = f \circ g : X \rightarrow Z)]도 [math(x_0)]에서 미분가능하고, 그 도함수는 다음을 만족시킨다.
[math( \displaystyle Dh = Df \circ Dg )]
여기서 [math(Df, Dg)]를 야코비 행렬로 보고 행렬곱을 계산하면 위의 버전을 얻을 수 있다.4. 주의점
흔히 고등학교 과정에서 나와 있는 1변수 연쇄법칙의 증명은 엄밀하지 않은 경우가 대부분이다.
[math(\displaystyle \lim_{x_1 \rightarrow x} \frac{f(g(x_1)) - f(g(x))}{x_1 - x} = \lim_{x_1 \rightarrow x} \frac{f(g(x_1)) - f(g(x))}{g(x_1) - g(x)} \frac{g(x_1) - g(x)}{x_1 - x} )]
언뜻 보면 완벽해 보이지만 이건 [math(g(x_1) -g(x))]가
도중에 0이 되는 경우는 우변의 분수식을 설명할 수 없다. 이것을 해결하기 위한 별도의 트릭을 사용하거나, 아니면 그냥 미분계수에 분수를 사용하지 않는 엡실론-델타 버전에 기대는 (즉 [math( |f(x+h) - f(x) - hf'(x)| < \epsilon h)] 이런 느낌으로) 방법이 있지만 첫번째는 번거롭고, 두번째는 고교과정 외이므로 보통 생략된다.- 첫 번째 방식을 이용한 일변수 연쇄법칙의 증명(접기/펼치기)
- 보조함수 [math(F)]를[math(\displaystyle F(y) = \begin{cases} \displaystyle \frac{f(y)-f(g(x))}{y-g(x)} & y \neq g(x) \\ f'(g(x)) & y = g(x) \end{cases} )]라 정의하자. [math(f)]가 [math(g(x))]에서 미분가능하다는 가정을 이용하면 [math(F)]의 연속성을 증명할 수 있다. 이제 위의 분수식하고 거의 흡사하지만 약간 다른 다음의 식을 생각한다.[math(\displaystyle \frac{f(g(x_1)) - f(g(x))}{x_1 - x} = F(g(x_1))\frac{g(x_1) - g(x)}{x_1 - x} )]만약 [math(g(x_1) \neq g(x))]이면 [math(F)]의 정의를 대입하면 성립하고, [math(g(x_1)=g(x))]라면 양변은 모두 0이니까 성립한다. 즉 위 식은 항상 맞으면서도, 이제는 모든 함수들이 연속이기 때문에 [math(x_1 \rightarrow x)]로 극한을 보낼 수 있다. 그러면 우변은 [math(F(g(x))g'(x) = f'(g(x))g'(x))]가 되어 증명 끝.
- 두 번째 방식을 이용한 다변수 연쇄법칙의 증명(접기/펼치기)
- 다음 일반적인 미분의 정의를 사용한다. [math( g: X \rightarrow Y)]가 [math(x_0 \in X)]에서 미분가능하다는 것은, 임의의 [math(\epsilon>0)]에 대해 [math( |g(x_1) - g(x_0) - Dg(x_0) (x_1 - x_0)| < \epsilon |x_1 - x_0| )]이 만족되는 [math(x)]의 근방이 존재한다는 것이다. 여기서 [math(Dg(x_0))]는 선형사상으로 간주. 이제 [math(y_0 = g(x_0), y_1 = g(x_1))]과 [math(h = f \circ g)]에 대해, 다음의 등식을 생각한다.[math( \displaystyle h(x_1) - h(x_0) - Df(y_0) Dg(x_0) (x_1 - x_0) = \left( f(y_1) - f(y_0) - Df(y_0) (y_1 - y_0) \right) + Df(y_0) \left(g(x_1) - g(x_0) - Dg(x) (x_1 - x_0) \right) )]임의의 [math(\epsilon_1, \epsilon_2>0)]에 대해서,[math( |f(y_1) - f(y_0) - Df(y_0) (y_1 - y_0)| < \epsilon_1 |y_1 - y_0| )]가 만족되는 [math(y_0)]의 근방을 [math(V_1)],라 하고, [math(U = g^{-1}(V_1) \cap U_1)]으로 잡자. 그러면 [math(U)] 위에서
[math( |g(x_1) - g(x_0) - Dg(x_0) (x_1 - x_0)| < \epsilon_2 |x_1 - x_0|)]가 만족되는 [math(x_0)]의 근방을 [math(U_1)][math( \displaystyle |h(x_1) - h(x_0) - Df(y) Dg(x) (x_1 - x_0) | < \epsilon_1 |y_1 - y_0| + \epsilon_2 \| Df(y_0) \| |x_1 - x_0| )]이고 특히 [math( |y_1 - y_0| \le (\|Dg(x_0)\| + \epsilon_2) |x_1 - x_0|)] 이므로,[math( \displaystyle |h(x_1) - h(x_0) - Df(y) Dg(x) (x_1 - x_0) | < \left( \epsilon_1( \|D(g(x_0)\| + \epsilon_2) + \|Df(y_0)\| \epsilon_2 \right) |x_1 - x_0| )]을 얻는다. 이제 주어진 [math(\epsilon>0)]에 대해 [math(\epsilon_1,\epsilon_2 >0)]을 적절히 잡으면, 선형사상 [math( Df(y) Dg(x) )]가 [math(h)]의 미분계수의 조건을 만족한다는 것을 증명할 수 있다.
5. 활용
5.1. 수학
5.1.1. 역함수의 도함수
자세한 내용은 역함수 정리 문서 참고하십시오.5.1.2. 음함수의 미분
[math(y)]가 [math(x)]에 대한 함수로 정의되면 [math(y)]를 [math(x)]에 대한 양함수(explicit function, 陽 函 數)라 하고, 원의 방정식처럼 여러 개의 변수들의 관계식, 즉 [math(F(x,\,y)=0)]의 꼴로 정의되면 [math(y)]를 [math(x)]에 대한 음함수(implicit function, 陰 函 數)[1]라 한다. 관계식 [math(F(x,\,y)=0)]을 [math(y)]에 대한 함수로 나타내어 미분하는 것이 쉽지 않은 경우가 많기 때문에, 관계식 [math(F(x,\,y)=0)]를 그대로 미분하되 [math(y)]가 [math(x)]에 대한 식으로 표현됨에 유의하여 연쇄법칙을 적용한다.즉, [math(y)]를 [math(f(x))]로 취급하고 미분하면
[math(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x})][math(f(x,\,y))] = [math(\displaystyle \frac{\partial f}{\partial x})] + [math(\dfrac{\partial f}{\partial y}\dfrac{{\rm d}y}{{\rm d}x}=0)]이 나오므로 이것을 [math(\frac{\mathrm{d}y}{\mathrm{d}x})]에 대한 식으로 만들면
[math(\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}})]이 되는데 이것을 음함수의 미분법이라 부른다.
음함수의 미분법은 단순 음함수 표현을 띄는
초월함수식들부터 시작해서 특히 이차곡선에서 많이 쓰인다. 이들 곡선은 [math(x)]값 하나에 [math(y)]값 [math(2)]개가 대응되므로 함수가 아니다. 단, [math(x^2=4py)]는 이차함수이므로 다항함수의 미분법을 적용해도 미분이 가능하다.[math(\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}})]이 되는데 이것을 음함수의 미분법이라 부른다.
사실 음함수의 미분'법'이라고 하는 것은 chain rule에 의한 자명한 결과이다. 이변수 함수 [math(f(x,\,y))]와 일변수 함수 [math(g(x))]가 각각 미분가능하면 두 함수로 만들어낸 새로운 일변수 함수[math(f(x,\,g(x)))]또한 미분가능하고 그 값은 chain rule에 의해 구할 수 있게 된다.
자세한 내용은 음함수 문서
의
음함수의 미분법
부분을
참고하십시오.5.2. 경제학
[1]
간혹 함수의 정의에 입각해 음함수를 이해 못 하는 학생들이 종종 있다. 함수란 하나의(또는 한쌍의) 조작변수에 대해 하나의 종속변수가 대응하는 관계인데, 예시로 든[math(x^2+y^2-1=0)]의 식은 하나의 조작변수 x에 대응하는 값이 [math(y=\pm \sqrt {1-x^2})]로 두개이기 때문이다. 이것은 애초에 음함수라는 개념부터 엉성하게 이해하고 있기 때문에 발생하는 착각이다. 애초에 음함수 자체는 함수가 아니다. 음함수를 뜻하는 'implicit function'을 직역하면 '내재적 함수'로, 이는 공역을 잘 분리하면 '(명시적)함수'(explicit function)가 될 수 있다는 의미이다. 실제로 예시로 든[math(x^2+y^2-1=0)]는 공역을 [math(y_1,\in\{0≤y_1<∞\}, y_2\in\{-∞<y_2≤0\})]로 분리 할 경우 명시적 함수(explicit function)가 된다. 이러한 오해는 음함수를 배우는 이유나 음함수의 역할에 대한 설명 없이 바로 음함수의 미분법부터 배우는 잘못된 교육체계 때문에 발생하는 것이며, '음'함수라는 한자식 표현이 'implicit' function이라는 의미를 제대로 표현하지 못하고 있기 때문이다.