최근 수정 시각 : 2025-01-06 01:58:06

공업수학

공학수학에서 넘어옴

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수 실수( 실직선 · 아르키메데스 성질) · 복소수( 복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수 함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수( 동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수( 대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수( 변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴( 균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사( 어림)
수열· 급수 수열( 규칙과 대응) · 급수( 멱급수 · 테일러 급수( /목록) · 조화급수 · 그란디 급수( 라마누잔합) · 망원급수( 부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수( 이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점( 변곡점 · 안장점) · 매끄러움
평균값 정리( 롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분( /예제) · 스틸체스 적분 · 부정적분( 부정적분 일람) · 부분적분( LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분( 코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수· 벡터 미적분 편도함수 · 미분형식 · · 중적분( 선적분 · 면적분 · 야코비안) · 야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리( 발산 정리 · 그린 정리 변분법
미분방정식 미분방정식( /풀이) · 라플라스 변환
측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수( 주부) · 유수 · 해석적 연속 · 오일러 공식( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 바나흐 대수 · C*-대수 · 폰 노이만 대수
정리 한-바나흐 정리 · 스펙트럼 정리 · 베르 범주 정리
이론 디랙 델타 함수( 분포이론)
조화해석 푸리에 해석( 푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론( 1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론( 확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학( 양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학( 경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

영어: engineering mathematics
한자: (공업수학), (공학수학), (공과수학)

1. 개요2. 내용3. 실제 공과대학에서
3.1. 수강 시기3.2. 학과별 차이3.3. 분량3.4. 배우는 내용3.5. 공학용 계산기와의 연관
4. 교재

1. 개요

공업수학이라 하면 다양한 범위의 수학을 지칭할 수 있지만, 대한민국의 4년제 대학교에서 공업수학이라고 하면 일반적으로 미국을 포함한 주요 국가 공과대학 2학년에서 배우는 고등 공학 수학(Advanced Engineering Mathematics)을 뜻한다. 공과대학의 학부 과정을 정상적으로 이수하기 위한 수학을 망라하고 있다. 즉, 공학을 위해 필요한 수학이라는 뜻이다.

2. 내용

공업수학이라는 어감으로 인해 특성화고등학교에서 배우는 수학이라고 생각할 수 있지만[1], 수학과를 제외하면 공대를 포함한 자연계(이공계) 대부분의 전공 2학년 과정에서 이수하는 상위 과정의 수학 과목으로, 보통 대학교 1학년 필수 과목인 미분적분학을 선행 과목으로 이수한 것을 전제로 한다.[2] 때문에 영문 과목명에 고급, 고등, 심화라는 의미의 "Advanced"라는 타이틀이 붙는다. 이 과목을 배우고 나면 학부 수준 공학에서 사용되는 대부분의 수학적 지식을 습득할 수 있다. 물리학과에는 2~3학년 때 공업수학 대신 수리물리학이라는 과목을 배우는데 주제가 미분방정식을 중심으로 하여 공업수학과 겹치는 부분이 많지만 지향점이 다른 점이 있다.

대학교 수학은 양과 깊이가 방대해지는데, 수학과에서는 계산보다 철저히 증명 위주의 수학을 다루며, 각 과목을 천천히 엄밀하게 다루게 된다. 하지만 이공계 정원의 대다수를 차지하는 공대는 물론이고 자연과학대에서도 수학과가 아닌 다른 전공의 경우, 수학은 수학과와 달리 목적이 아닌 수단이며, 따라서 수학에 존재하는 많은 엄밀한 증명을 알 필요가 없으며, 응용을 위한 방대한 원리를 계산법과 함께 빠르게 습득할 필요가 있다.

따라서 공과대학 등 수학과를 제외한 다른 자연계 전공을 위한 수학으로서 수학과와는 지향점이 다른 수학 과목의 필요성이 대두되었고 그에 따라 '공업수학(혹은 공학수학)'이라는 과목이 탄생하였다. 줄여서 '공수'라고 부른다. 공과대학에 재학 중이며 개설되어 있다면 반드시 이수해야 하는 과목이고, 대부분의 학교의 공과대학은 당연히 졸업 필수과목으로 지정해 두고 있다.[3] 물론 일부 공과대학은 개설하지 않는다.[4][5][6]

예를 들어서 컴퓨터공학과의 경우 색다른 커리큘럼의 수학을 배울 수 있다. 특히 다른 공학분야와는 다르게 공식을 암기하여 풀수있는 문제풀이를 익히는게 아니라 증명에 쓰이는 논리적 사고능력을 가르는것이 중요하다.[7] 컴퓨터과학의 이론적 토대는 수학에 기반을 두고있고, 컴퓨터 관련 학문을 제대로 공부한다는 것은 수학적 논리를 공부한다는 것과 같은 말이기 때문이다. 컴퓨터과학 전공은 선형대수, 이산수학, 확률론, 통계학, 정수론, 미분기하학 쪽에 치중해서 배우게 되는데... 이쯤되면 그냥 수학과 아닌가???[8] 게다가 컴퓨터 과학의 경우 공부하는 분야에 따라서 필요한 수학도 천차만별이다. 확률론, 통계학, 선형대수는 Computer Science 전반에 쓰인다 생각하면 좋다.

공업수학은 공과대학 학부 과정을 이수하기 위해 기본적으로 필요로 하는 수학이 망라되어 있으며, 수학 관련학과나 대학원에 진학하지 않는 이상 일반적으로 자연계 수학 필수 과정 중에서 가장 높은 단계의 수학을 배우는 과목이다. 일반적으로 공과대학 2학년에 이수하게 되어 있으며, 일반적으로 선행 과목으로 1학년 때 배우는 미적분학 이수가 필요하다.

수학이라는 타이틀을 달고는 있어도 수학과의 주요 수학 과목들과는 이질적인 면이 많다. 왜냐하면 수학은 수학이지만 철저히 공과대학생을 위한 수학이기 때문에 수학의 방대한 주제들에 관한 내용을 짧은 기간에 필요한 것만 배우기 때문이다. 즉, 수학을 그 자체의 학문이 아니라 공학을 이해하고 공부하는데 필요한 도구로서 사용하기 위해 필요한 수학 지식을 배우는 것이라고 봐야 한다. 대학원에 간다면 학부 과정에서 배우는 공업수학으로는 부족할 수 있다. 그래서 대학원에 갈 사람들은 미분방정식과 선형대수학을 따로 배우는 것이 좋다. 공업수학은 수학과에서 가르치는 과목이 아니라 공과대학 등 타 자연계 학과에서 가르치는 과목이며, 수학과에서는 별도의 교과과정이 있으므로 수학과 학생들은 굳이 이수할 필요가 없는 경우가 절대다수이다.[9]

푸리에 변환 또한 통신 분야에서 폭넓게 쓰이며, 벡터미적분학 또한 전자기학을 비롯한 과목에서 쓰인다. 대부분의 교수들은 "공업수학을 배웠다"를 완벽하게 이해했다는 것으로 알고 수업을 하기 때문에(시간관계상 설명 못하는 부분도 있고) 꼭 열심히 들어야 한다.

3. 실제 공과대학에서

3.1. 수강 시기

공과대학에 진학한 뒤 전공 과목으로 듣게 되는 수학 과목이다. 대부분 미적분학을 이수한 후 2학년 때 이 과목을 배운다.[10][11][12][13]

보통 공과대학들은 이들을 '전공필수(전필) 과목'으로 지정하니, 이걸 F 받거나 하면 패스할 때까지 들어야 하고[14][15] 공업수학이 선수과목으로 걸려 있는 전공과목을 들을 수도 없게 되어 그렇기 때문에 재수강생들이 많은 과목이다. 대부분의 대학에서 필수로 지정하는 과목이기도 하고, 무엇보다도 학력이 낮은 대학교는 공대에도 수학포기자들이 많아서 낮은 학점을 받는 경우가 많기 때문.

같은 공과대학이라도 전공이 전화기 외에도 컴퓨터공학, 재료공학 등으로 매우 다양해서 요구되는 수학의 종류도 크고 작은 차이가 존재하기 때문에, 같은 학교여도 전공이 다르면[16], 혹은 같은 전공이라도 학교가 다르면 공업수학을 소화하는 기간이나 분량 등에서 큰 차이를 보인다. 예를 들어 환경공학이라면 그렇게 비중이 크진 않지만 전자공학, 기계공학이라면 애인처럼 끼고 살아야 하고 그런데 진짜 애인은 안 생겨요. 심지어는 공업수학을 아예 개설하지 않고 수학과 과목들 중 공업수학에 포함된 과목들을 따로 수강하라고 방목(...)하는 대학도 있다. 대표적인 학교가 카이스트[17] 포항공과대학교[18]이다. 이 경우 제대로 배울 수는 있지만 별로 쓸모 없는 부분이 길어지기도 한다는 게 문제다. 시험에서 증명문제가 많이 나온다던가 하는 것 등등

물리학과, 수학과, 통계학과, 사범대학 수학교육과 학생들도 실용적인 목적의 수학을 공부하기 위해, 혹은 공대 복수전공이나 편입 등을 위해 찾아오는 경우가 있다. 특히 편입의 경우 자연계 대학 편입학에서 미적분학과 함께 매우 중요하게 여겨지는 과목이다. 다만 새로 편입한 대학에서 들을 일은 없다. 애초에 편입하면 공업수학이 끝난 3학년부터 시작하기도 하고. 전적대학에서 이수를 하고 오기를 요구하는 게 보통. 또한 편입시험에서 일부 대학들을 제외하면 수학 출제범위가 공업수학을 고스란히 포함하기 때문에 편입 후 머리를 포맷해버리지 않고서는 수학 때문에 문제될 일은 없다.

3.2. 학과별 차이

대학마다 천차만별 케바케라서 확실하게 단언하는 것은 금물이지만, 주로 공과대학 소속 교수나 해당 과의 커리큘럼을 잘 이해하고 있는 교양학부나 수학과 교수가 배정되는 것은 비슷하되, 그 교수의 전공에 따라서도 강의의 방향 등에서 차이가 있다. 이과의 기초과목 '수학, 과탐'의 연장선격인 미적분학, 일반물리학, 일반화학, 일반생물학처럼 공과대학의 수강대상자 전원이 한 커리큘럼으로 배우고 공대 내 여러 학과 학생들이 섞여서 듣는 경우도 있지만, 공과대학은 전공별로 필요한 수학적 역량이 다르다는 점에서 아예 전기전자과 전용(전기전자수학), 화공과 전용(화공수학), 기계과 전용(기계수학) 같은 식으로 과마다 전용 강의를 진행하기도 한다. 해당학과 공과대학 소속 교수가 강의하고 해당학과 학생들만 된다. 과목 이름은 그냥 공업수학이더라도 각 학과별로 커리큘럼이 조금씩 다른 경우도 있다.

전기/화공/기계는 필요한 범위가 어느 정도 일률적으로 말할 정도는 된다. 토목공학/건축공학의 경우 동역학, 정역학과 함께 구조역학이 주요 학문중 하나이기 때문에 공업수학의 중요성이 매우 크다. 예컨대 공업수학에서 배우는 파동방정식을 모르면 동역학의 대부분의 내용을 이해할 수 없다.

전자공학과는 상미분방정식, 선형대수학, 푸리에 해석, 라플라스 변환, 편미분방정식 등을 배운다.

한편, 컴퓨터공학과의 경우 일반 공대와는 다른 커리큘럼의 수학을 배울 수도 있다. 역학을 주로 다루게 되는 다른 공대와는 달리 수치해석, 선형대수, 이산수학, 통계학, 확률론, 정수론, 미분기하학등을 활용한 응용수학 쪽에 더 치중해서 다룬다. 컴퓨터과학 자체가 물리학보다는 수학에 더 기반을 둔 학문이라 그렇다.[19] 게다가 컴퓨터과학은 공부하는 분야에 따라서 필요한 수학도 천차만별이다. 보안, 암호학계열에선 정수론, 선형대수학이, 컴퓨터 그래픽스 전공 시에는 미분기하학, 선형대수가 필요하며, 신호처리[20]에는 전자과와 비슷하게 푸리에 해석 등을 다루게 된다. 확률론, 통계학, 선형대수 컴퓨터과학 전반에 쓰인다 생각하면 좋다.

의공학과는 크레이직(Kreyszig, 10판 원서)를 쓰는 고려대학교 기준으로 1학기에 1~6장, 2학기에 7, 8, 11~14장을 나간다. 즉 상미분방정식, 선형대수, 푸리에 해석, 편미분방정식, 복소미적분까지 다룬다.

3.3. 분량

보통 두 학기 분량으로 진행하는 경우가 많지만[21] 학교나 전공에 따라서는 세 학기 분량을 소화하며 피눈물을 흘려야 하는 경우도 있고[22][23], 반대로 한 학기 만에 뚝딱 끝내거나 전공에 필요한 수학을 따로 듣게하는 경우가 있다. 일례로 컴퓨터공학과의 경우 공업수학은 안듣고 정수론, 이산수학, 통계학, 선형대수, 미분방정식등을 따로 듣게 하는 대학들이 있는데 컴퓨터과학은 다른 공학분야와는 다르게 공식을 암기하여 풀수있는 문제풀이를 익히는게 아니라 증명에 쓰이는 논리적 사고능력을 가르는것이 중요하기 때문에 그러는것으로 보인다.[24] 심지어는 공업수학 ABCDE로 나눠놓고 A는 공통, BCDE는 학과별로 정해서 다른 내용을 배우는 학교도 있다.[25] 이러한 분량의 차이는 학교별 교육 방식과 더불어 각 전공에서 요구하는 수학의 수준에 따라 해당 부분에 대해 얼마나 깊이 다루느냐가 달라지기 때문이라 볼 수 있다. 또한 이렇게 대학별로 학과별로 학생들에게 요구되는 수준이 천차만별이라 수학 전공 교수들이 강의를 하는 경우가 많지 않다는 점이 다른 수학 과목들에 비해 이색적이다. 사실 공과대학 과목이니 당연하다고 볼 수도 있다.

3.4. 배우는 내용

배우는 내용은 미적분학 교과서에서 다루는 벡터미적분 같은 내용부터 시작해서 미분방정식, 해석학, 선형대수학이 기본으로 들어가고, 이산수학, 확률론, 통계학 등의 여러 분야가 옵션으로 소개되는 등 과목의 범위 자체가 하나로 정의할 수 없이 매우 넓은 편이다. 문제는 이를 배우는 데 있어 정석적인 과정이나 접근방식은 과목별로 매우 차이가 난다는 점인데... 4년 내내 수학만 공부할 수도 없는 공대생들에게는 이것들을 일일이 개별 과목으로 섭렵하려면 애로사항이 굉장히 많다. 더군다나 많은 남학생들이 1학년 수료 후~2학년 여름방학에 군 입대를 하는데, 이 시기는 공업수학을 배우기 직전이나 한창 배우고 있는 시기와 겹친다. 따라서 전역한 남학생들은 기초 개념이 증발한 채 수업을 듣게 되는 문제점이 있다. 물론 다시 복습하면 어느 정도 기억이 돌아오지만, 입대 전에 체계적으로 쌓아올린 수학적 기초를 중구난방으로 땜질한다는 느낌을 지울 수 없다. 물론 군대 때문에 학문의 기초가 무너지는 게 수학뿐만은 아니지만. 이 때문에 빠른 시간에 공학계열 과목 수강에 문제가 없을 정도로까지 실용적인 목적의 수학을 숙달시키기 위해 만들어진 과목이 바로 이 공업수학. 서로 이질적인 과목들을 한 과목으로 묶어버린 성격상 대학 강의가 아니라 독학을 하는 사람에게는 맥이 끊기지 않으면서도 각자가 주안점을 둔 파트의 내용이 알찬 교과서를 선택하는 것이 중요하다.

3.5. 공학용 계산기와의 연관

공학용 계산기가 공학적으로 필요한 수학적 계산(행렬, 복소수 연산 등)을 쉽고 빠르게 해 내도록 고안된 장치이므로 원초적으로는 공업수학과 떼려야 뗄 수 없는 관계에 있다. 애초에 공업수학을 제대로 익히지 못하면 계산기도 제대로 쓸 수 없으니까. 시험 칠 때 공학용 계산기는 필수품이다. 다만 공업수학 시험에 따라 공학용 계산기를 쓰는 것을 허용하지 않거나, 혹은 문제 출제 방식에 따라 계산기가 별로 쓸모없는 경우가 있는 등[27] 케바케이다.

요즘은 공학용 계산기의 휴대성이 필요한 일을 할 때도 스마트폰이나 태블릿 PC라는 대안이 있어서 오히려 공학용 계산기를 가질 의미가 퇴색한 편이다. 하지만 TI 계산기가 출동한다면 어떨까? 개인 공부 용도로 쓴다면 어차피 휴대성은 별로 중요하지 않기 때문에 MATLAB 등으로 직접 코딩을 하거나, Wolfram Alpha같은 시뮬레이션 프로그램을 돌리는 게 훨씬 효율적일 것이다. 따라서 현재는 부정행위 문제로 스마트폰, 태블릿 PC 등의 반입이 금지되는 각종 시험이 아닌 이상 공학용 계산기는 잘 쓰이지 않는다. 공학시험용 계산기

4. 교재

  • Erwin O. Kreyszig, Advanced Engineering Mathematics
    전세계적으로 가장 많이 쓰이는 교과서. 보통 크레이직으로 많이 불린다. 독일 캐나다 수학자 어윈 크라이시그(1922-2008)[28]가 저술하였다. 미분적분학에서는 스튜어트의 미분적분학 교재가 천조국판 수학의 정석이라고 소개해 놓았지만, 진정한 천조국판 정석은 이 책이다. 해당 과목에서 스튜어트 미분적분학보다 더욱 독보적이며, 스튜어트 미분적분학이 뜨기 수십년 전에 이미 이 책은 공업수학의 확고한 네임드 교재로 자리잡았다.[29] 번역판은 공업수학으로 출판된다. 이름이 읽기가 난해하기에 대한민국의 대학생들은 그냥 어윈 크레이직이라고 읽는 경우가 많다.[30][31] 저자는 2008년 말에 사망했지만 이후에도 계속해서 개정판이 나오고 있다. 국내 기준으로는 2012년에 10판까지 나온 상태. 일반 버전(의 국제판/북미판)과 축약 버전이 판매되는데, 일반적인 경우 1권에서는 라플라스 변환과 벡터미적분까지, 2권에서는 푸리에 급수부터 복소해석, 수치해석까지 다루고, 축약버전은 복소해석까지만 나와있다. 잦은 오타는 덤. 10판 표지는 국제판이 고층빌딩, 북미판이 사장교(목포대교처럼 생긴 다리). 2020년부터 기존 9판, 10판을 번역해 출판했던 범한서적판이 절판되고 텍스트북스가 판권을 얻어 새로 10판의 번역본을 출판하였다. 탕웨이가 들고 다니는 모습도 포착 되었다. # 10판 솔루션의 경우는 텍스트북스에서 발행한 것이 있다. (번역본이 아닌 자체적으로 펴낸 것으로 보인다). 식과 내용의 전개가 꽤 압축된 편이다. 강의 없이 책으로만 독학하기에는 설명이 부족할 수 있다.
    공업수학을 들을 일이 없는 수학과생들에게는 '크레이직' 하면 미분기하학, 함수해석학 등 다른 과목 교과서의 저자로도 잘 알려져 있으나, 의외로 Kreyszig는 공업수학의 핵심 진도라 할 수 있는 ODE나 PDE를 중점적으로 다루는 교과서는 따로 낸 적이 없다.
  • Dennis G. Zill, Advanced Engineering Mathematics
    위의 Kreyszig 저 다음으로 많이 쓰이는 교과서 중에 하나이다. Kreyszig보다는 설명이 자세하고 연습문제도 쉬운 편이지만, 매 챕터마다 문제 수가 매우 많다. 적게는 20개~많게는 100개가 넘어가는 수준. 따라서 공업수학을 처음 공부할 때나 독학할 때에는 Kreyszig보다 공부하기 수월하다. 번역판 제목은 Kreyszig과 다르게 공학수학으로 출간되며, Kreyszig보다 내용이 조금 적은 편이다. 1권은 상미분방정식과 선형대수 파트, 연립 미분방정식이 수록되어 있으며, 2권은 Fourier해석과 복소해석이 수록되어있다. Kreyszig에 수록되어 있는 수치해석과 최적화, 그래프, 확률통계 [32]가 없는 것이 아쉬운 부분. 5판에는 X 실험기 시리즈 보잉 팬텀 웍스의 X-48B가 나와있고, 해답지가 별도로 나온다. 2017년에 6판이 나왔는데, 표지는 번역판 표지는 사장교이며, 북미판은 우주선이다. [33] 그리고 6판 기준 북미판과 국제판의 내용 차이가 없다. [34] 2021년 기준으로 현재 판매 중인 판본은 7판.
    Zill은 미적분학, 복소해석학이나 미분방정식 등 일부 전공수학 과목의 교과서도 같이 내곤 하지만, Kreyszig와 달리 대학원 레벨의 고급과정의 저서를 내놓지는 않는 편이라 수학과 학생들은 Zill의 저서를 본 적이 없는 사람들도 많다.

보편적으로 이 두권의 책들이 제일 많이 쓰이며, 이 두권의 책 외에 다른 책들은 거의 쓰이지 않는다. 내용도 없을 뿐더러 가독성도 현저히 떨어지기 때문이다. 독자들은 Zill보다 Kreyszig이 더 고난도라고 여기는 경향이 있다.

역시나 과마다, 대학교마다 수업 내용이 다른 것처럼 교과서 역시 다른데 같은 대학교라도 소속 단과대학마다 다르기도 하고, 심지어는 같은 단과대학(대부분 공과대학) 소속이라도 학과마다 다른 교재를 쓰기도 하며 심지어 같은 학과라도 교수에 따라 다른 교재를 쓰기도 한다.
[1] 물론 공업계열 고등학교에서 배우는 수학도 기초적인 내용의 공업수학이다. [2] 대학과 학과마다 커리큘럼이 약간씩 달라서 미적분학을 굳이 안 배우고 공업수학에서 미적분학 기초 내용 약간 포함해서 배우는 경우도 있다. [3] 과목명이나 필수/선택 지정 범위는 학교, 학과마다 차이가 있을 수 있다. 대부분은 '공학수학', '공업수학'( 학점은행제에서는 이 이름을 채택하였다) 정도로 무난하게 짓는 경우가 많지만, 가끔 전혀 다른 이름으로 개설되는 경우도 있다. '고등미적분학'이라는 과목을 찾아봤더니 교재 공지가 크레이직 공업수학이라고 뜨는등...( 연세대학교가 이렇다.) 물론 다른 이름으로 개설된 경우에도 수학 과목임은 명백히 알아볼 수 있게 개설하니 구분하기는 쉽다. [4] 이런 경우 미분방정식 선형대수학을 수학과로부터 듣고 와야 하는 경우가 많다. [5] 건축학과의 경우 교양과목 개념으로 구조역학 응용역학 파트만 간단하게 공부하고 전공과목에는 수학이 들어가지 않는다. [6] 건축학과의 커리큘럼은 오로지 건축설계뿐이다. [7] 가끔 학교 수학 성적은 낮은데도 컴퓨터과학 지식과 프로그래밍 실력이 나쁘지 않은 사람이 존재하는데 실제로는 입학시험, 시험 같은곳에 필요한 공식, 문제풀이를 익히지 못한 거지, 응용과 추리 같은 것을 바탕으로 하는 사고력은 좋은 경우이다. 이런 사람의 경우 적성이 있기에 대학수학을 제대로 공부하면 잘 할 확률이 높다. [8] 괜히 수학과 학생들의 복수전공 1지망 분야가 컴퓨터겠는가? 보통은 수학과에서 컴퓨터 같이 공부하던 학생들이 컴퓨터를 공부하러 관련대학원으로 오는 식이지만, 가끔 역으로 컴퓨터전공 학생이 수학과 강의에 맛 들이고 이쪽 과목들을 듣다가 자기 이뻐하는 수학과 교수한테 영입당하는 경우도 있다. 서로의 분야에의 진입장벽이 다른 공학계열과의 진입장벽에 비해서 다소 낮은 편이라 자신의 주전공과의 연계성도 높기 때문에 가능한 일. [9] 다만 공과대학 교수가 이런저런 사정으로 가르칠 수 없을 때 수학과 교수들이 강의를 대신 땜빵해주거나, 아예 수학과에서 교양과목 형식으로 개설해 주기도 한다. [10] 간혹 1학년에 미적분학을 배우면서 함께 시작하는 경우가 있다. 연세대 공대에서 과거 이 과목을 1학년 필수 과목으로 지정했었다. 1학년에 입학하자마자 3월 한달 동안 연대 공대 전용 교재로 1학년 과정의 미분적분학, 급수, 벡터, 선형대수 기초 등을 속성으로 배운 후 4월부터 크레이직 책으로 미방을 배우기 시작했었다. 그러나 이후 이같은 커리큘럼은 폐기되었고, 다른 학교처럼 1학년때 미분적분학을 배우고 2학년 때 공업수학을 듣는 것으로 바뀌었다. [11] 일부 대학 학과에서는 미적분학을 안 듣고 바로 공업수학을 듣는 경우도 있다. [12] 경북대 전기공학과와 전자공학부, 부산대학교 기계공학부에서는 1학년 1학기때 미적분학 수강 후 2학기때 공업수학을 듣는다(...). [13] 학부에 따라 3학년 1학기에 배우는 학교도 있다. [14] 다만 필수 과목인지라 어지간히 농땡이 안 피우고 시험을 0점 받지 않는한 웬만해서는 F는 안 주려고 한다. 다만 공업수학을 제대로 하지 못한다면 추후 전공 수업도 제대로 따라갈 수조차 없기 때문에 F는 안 받더라도 최대한 수업을 잘 듣고 배운 내용을 잘 소화하는 것이 좋다. 일부 대학 학과에선 교양필수 과목으로 개설하기도 하는데, 어쨋든 필수 과목이라 F 나오면 안 된다. [15] 따라서 수요가 많기에 두 자릿 수 이상의 여러 분반을 편성하여 개설시키고 계절학기에서도 반드시 개설된다. [16] 이 때문에 단과대보다 범주가 작은, 학과 차원에서 강좌를 개설하고 석차를 같은 학과생들끼리 매기는 경우가 일반적이다. 타 학과생이 신청하면 전공필수가 아닌 자유선택으로 배정되어 전공학점으로 인정되지 않는다. [17] 아예 졸업을 위해 9학점 이상 들어야 하는 기초선택 과목 중 일부로 선형대수학개론, 응용미분방정식, 응용해석학, 확률및통계가 개설되어 있다. [18] 이러한 이유로 비수학과 학생들이 많이 듣는 수학과 과목에는 응용선형대수, 미분방정식, 확률 및 통계, 이산수학, 최적화개론 등이 있다. [19] 괜히 수학과생들의 복수전공 1지망 분야가 컴퓨터겠는가? 보통은 수학과에서 컴퓨터 같이 공부하던 학생들이 컴퓨터를 공부하러 공과대학원으로 오는 식이지만, 가끔 역으로 컴공에서 이쪽 수학에 맛 들이고 이쪽 과목들을 듣다가 자기 이뻐하는 수학과 교수한테 영입당하는 경우나 컴공 커리큘럼을 보면서 수학 교직을 노리면서 수학을 복수전공으로 하는 경우도 있다. 서로의 분야에의 진입장벽이 다른 공학계열과의 진입장벽에 비해서도 그리 높지 않기 때문에 가능한 일. [20] 전자과에서 신호처리는 주로 라디오나 텔레비전, 휴대전화 같은 통신분야와 연계하여 배우지만 컴퓨터 공학과에서는 음향이나 영상신호를 처리하는 내용을 주로 다룬다. [21] 이 경우 공업수학Ⅰ, 공업수학Ⅱ로 나누어 배우게 된다. 대개 둘 다 필수이나, 전기전자를 제외한 고려대학교 공과대학, 단국대학교 공과대학 및 SW융합대학처럼 Ⅰ만 필수고 Ⅱ는 선택인 곳도 있다. 고려대 전기전자는 I, II 모두 필수이다. 숭실대학교 또한 전기/전자/정보통신 모두 I, II 모두 필수이다. 보건과학대학 소속인 바이오의공학부는 특이하게 Ⅰ이 선택이고 Ⅱ만 필수이다. 원래 Ⅰ, Ⅱ 모두 필수였으나 2021년부터 변경되었다. [22] 공업수학Ⅰ, Ⅱ, Ⅲ로 나누어 배우게 된다. 대표적으로 서울 소재 한양대학교 서울캠퍼스 기계공학부와 화학공학과, 건설환경공학과, 원자력공학과. Ⅲ은 선택과목으로 걸어둔 경우도 많은데 이 두 과에서는 졸업필수과목이다. [23] 이 경우 Ⅰ에서 행렬과 미분방정식, Ⅱ에서 복소미적분 관련 내용을 배우며 Ⅲ에서 벡터미적분학, 푸리에 변환과 편미분방정식을 배운다. [24] 가끔 학교 수학 성적은 낮은데도 컴퓨터과학 지식과 프로그래밍 실력이 나쁘지 않은 사람이 존재하는데 실제로는 입시, 시험 같은곳에 필요한 공식, 문제풀이를 익히지 못한 거지, 응용과 추리 같은 것을 바탕으로 하는 사고력은 좋은 경우이다. 이런 사람의 경우 적성이 있기에 대학수학을 제대로 공부하면 잘 할 확률이 높다. [25] 이 경우 A는 앞 학기, BCDE는 뒤 학기에 개설하게 된다. [26] Kreyszig 공업수학에는 확률과 통계 부분은 북미판 원서에만 있다. 구글에 이 PDF 자료가 있다. 그리고 Zill 공업수학에는 해당 확률과 통계 파트가 챕터 2개로 되어 있는데 북미 현지 학생들을 대상으로 유료로 pdf 판으로 판매하고 있다. https://www.jblearning.com/catalog/productdetails/9781284207989) [27] 해석학적으로만 풀 수 있는 문제들의 경우( 미분방정식) [28] 크라이스치히는 독일 다름슈타트 대학교에서 박사 학위를 받은 후 튀빙겐 대학교, 뮌스터 대학교에서 박사 후 과정을 거친 후 북미로 건너가 1954년부터 미국 스탠퍼드 대학교, 캐나다 오타와 대학교, 미 오하이오 주립대학교의 강사를 거쳐 1957년 오하이오 주립대에서 교수로 임용되었다. 1960년 유럽으로 돌아가 오스트리아 그라츠 공과대학교에 부임하였고, 1962년 공업수학 초판을 출판했다. 이후 독일 뒤셀도르프 대학교, 칼스루에 대학교에서 가르쳤다. 하지만 1969년 집권한 서독 사회민주당 빌리 브란트 정권이 초유의 대학 평준화 정책을 실시하여 독일 대학 교육이 만신창이가 되자 이에 실망하여 1973년 독일을 떠나 캐나다 윈저 대학교 교수로 자리를 옮겼다. 1984년 칼턴 대학교 교수로 부임하여 여기서 은퇴할 때까지 교직 생활을 이어갔다. [29] 현재 교수나 선임연구원급 되는 분들은 스튜어트를 모르는 사람은 많아도 크레이직을 모르는 사람은 없다. [30] 미국에서도 실제 발음으로 읽기보다는 그냥 '어윈 크레이직'이라고 읽는 경우가 많다. [31] 같은 독일어권인 오스트리아 출신 월터 루딘(Walter Rudin)보다도 발음 왜곡이 심하다. [32] Kreyszig 원서에는 수록되어 있는 파트고 Zill은 해당 확률과 통계 파트가 챕터 2개로 되어 있는데 북미 현지 학생들을 대상으로 유료로 pdf 판으로 판매하고 있다. https://www.jblearning.com/catalog/productdetails/9781284207989 [33] 이 아저씨는 수학과 학생들을 위한 미분방정식 입문(A First Course in Differential Equations with Modelling Applications), 미분방정식과 응용(Differential Equations with Boundary-value Problems) 같은 책들에다가도 우주인들의 EVA 같은 사진을 써먹는다. 진성 우주덕이신 듯. [34] 국제판 뒤에 북미판과 내용 차이가 있을 수 있다고 표시해 놨는데, 둘 다 펴서 확인한 결과, 큰 차이가 없다.