최근 수정 시각 : 2024-11-03 16:46:04

볼록함수

볼록성에서 넘어옴

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수 실수( 실직선 · 아르키메데스 성질) · 복소수( 복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수 함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수( 동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수( 대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수( 변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴( 균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사( 어림)
수열· 급수 수열( 규칙과 대응) · 급수( 멱급수 · 테일러 급수( 일람) · 조화급수 · 그란디 급수( 라마누잔합) · 망원급수( 부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수( 이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점( 변곡점 · 안장점) · 매끄러움
평균값 정리( 롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분( 예제) · 스틸체스 적분 · 부정적분( 부정적분 일람) · 부분적분( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분( 코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수· 벡터 미적분 편도함수 · 미분형식 · · 중적분( 선적분 · 면적분 · 야코비안) · 야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리( 발산 정리 · 그린 정리 변분법
미분방정식 미분방정식( 풀이) · 라플라스 변환
측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 C*-대수 · 폰 노이만 대수
정리 한-바나흐 정리 · 스펙트럼 정리 · 베르 범주 정리
이론 디랙 델타 함수( 분포이론)
조화해석 푸리에 해석( 푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론( 1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론( 확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학( 양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학( 경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

1. 정의2. 성질3. 공식4. 기타

1. 정의

볼록 집합 [math( S \subseteq \mathbb{R}^n)] 위에 정의된 함수 [math( f : S \to \mathbb{R} )]가 볼록(convex)임은 다음과 같다:
임의의 점 [math( (x, y) \in S^2)]과 실수 [math(t \in [0, 1])]에 대해, [math(f\left(tx+\left(1-t\right)y\right)\leq tf\left(x\right)+\left(1-t\right)f\left(y\right))][1]

다르게 말하면:
볼록 집합 [math( S )] [math(\subseteq \mathbb{R}^n)] 위에 정의된 함수 [math( f : S \to \mathbb{R} )]에 대해, [math(\left\{ (x, y) \in f : y \geq f(x) \right\})]가 볼록집합이면 '''볼록(convex)이다.

[math(-f)]가 볼록한 경우 [math(f)]가 오목이다. 다음의 표를 참고하여라:
나무위키 고등학교 교과
볼록 아래로 볼록
위로 오목
오목 위로 볼록
아래로 오목

즉, 볼록/오목 함수는 특별한 말이 없으면 아래로 볼록/오목한지를 의미하는 것이라고 이해하면 된다.

2. 성질


참고로 중점만을 가지고 볼록함수를 판별하는 것은 충분하지 않다. 즉 [math(\displaystyle {f(x)+f(y) \over 2} \ge \displaystyle f({x+y \over 2}))](*) 라고 다 볼록함수가 아니라는 소리다. 예시로 코시 함수 방정식의 불연속해들이 여기 해당한다. 하지만 미분가능한 함수이며 (*)를 만족시키면 볼록함수가 된다.

볼록함수가 구간 내에서 두번 미분가능하면 [math(f(x) \ge 0)]을 만족시킨다. 역으로 두번 미분가능한 함수가 열린 구간 내에서 [math(f(x) \ge 0)]을 만족시키면 [math(f)]는 그 구간 안에서 볼록이다. 증명은 평균값의 정리를 사용하면 된다.

한편, 일반적인 볼록함수 [math(f)]에 대해서도 다음과 같은 사실이 알려져 있다. (고교과정 외 수준)
  • [math(f)]는 열린 구간에서 연속이다.
  • 임의의 점 [math(x)]에 대해 좌미분(left derivative) [math(\partial_{-}f(x)= \lim_{h \rightarrow -0} \frac{f(x+h) - f(x))}{h} )] 과 우미분(right derivative) [math(\partial_{+}f(x) = \lim_{h \rightarrow +0} \frac{f(x+h) - f(x)}{h} )] 이 존재하며, 임의의 [math(\epsilon>0)]에 대해 [math(\partial_{-}f(x) \le \partial_{+}f(x) \le \partial_{-}f(x+\epsilon))]이다.
  • [math(\partial_{-}f(x_0) \le a \le \partial_{+}f(x_0) )]을 만족시키는 상수 [math(a)]에 대해서, 직선 [math( y = a(x-f(x_0)) + f(x_0) )]은 볼록함수 아래에 있다. 즉 [math( a(x-f(x_0)) + f(x_0) \ge f(x) )]가 성립한다. 이 [math(a)]를 'subderivative'라 부르기도 한다.
  • [math(f)]는 가산 개의(countable) 점을 제외하면 미분가능하다.
  • 닫힌 구간 내에서 볼록함수의 최대점은 양끝 경계점 중 하나이고, 최소점은 유일하게 존재한다.
미분가능하지 않은 볼록함수의 예시로는 절댓값 함수 등이 있다.

한편, 어느 점 근방에서도 볼록/오목하지 않은 함수도 있다.

3. 공식

닫힌 구간 [math([a,\,b])]에서 연속인 함수 [math(f(x))]에 대하여 양수인 두 상수 [math(m)], [math(n)]에 대하여 다음이 성립한다.
  • [math(f(x))]가 위로 볼록(아래로 오목)
    • [math(\displaystyle \frac{mf(b)+nf(a)}{m+n}<f \biggl( \frac{mb+na}{m+n} \biggr) )]
  • [math(f(x))]가 아래로 볼록(위로 오목)
    • [math(\displaystyle \frac{mf(b)+nf(a)}{m+n}>f \biggl( \frac{mb+na}{m+n} \biggr) )]

특히 [math(m=n=1)]이면
  • [math(f(x))]가 위로 볼록(아래로 오목)
    • [math(\displaystyle \frac{f(a)+f(b)}{2}<f \biggl( \frac{a+b}{2} \biggr) )]
  • [math(f(x))]가 아래로 볼록(위로 오목)
    • [math(\displaystyle \frac{f(a)+f(b)}{2}>f \biggl( \frac{a+b}{2} \biggr) )]

각 수식의 의미를 먼저 파악해보자.

[math(\displaystyle \frac{mb+na}{m+n} )]

의 경우 [math(x)]축 위의 두 점 [math((a,\,0))], [math((b,\,0))]을 [math(m:n)]으로 내분하는 점의 [math(x)]좌표이다. 즉,

[math(\displaystyle f \biggl( \frac{mb+na}{m+n} \biggr) )]

는 해당 내분점의 [math(x)]좌표에 대한 [math(f(x))]의 함숫값이다.

이번에는 두 점 [math((a,\,f(a)))], [math((b,\,f(b)))]를 연결하는 직선 [math(l)]을 생각한다. 위에서 구한 내분점의 [math(x)]좌표에 대한 직선 위의 점은 곧 두 점 [math((a,\,f(a)))], [math((b,\,f(b)))]를 [math(m:n)]으로 내분하는 점이다.[2] 따라서 해당 점의 [math(y)]좌표는

[math(\displaystyle \frac{mf(b)+nf(a)}{m+n} )]

가 된다. 위 결과는 곧
  1. [math(x)]축 위의 내분점의 [math(x)]좌표에 대한 직선 [math(l)] 위의 함숫값 [math(\dfrac{mf(b)+nf(a)}{m+n})]
  2. [math(x)]축 위의 내분점의 [math(x)]좌표에 대한 [math(f(x))]의 함숫값 [math(\displaystyle f \biggl( \frac{mb+na}{m+n} \biggr))]

의 대소를 비교하는 것으로 이르게 된다.

곡선의 오목·볼록의 정의에 따라 구간 내에서 아래로 볼록한 함수의 함숫값은 직선 [math(l)]보다 밑에 있게 되어 2는 1보다 항상 아래에 있으므로

[math(\displaystyle \frac{mf(b)+nf(a)}{m+n}>f \biggl( \frac{mb+na}{m+n} \biggr) )]

반대로 구간 내에서 위로 볼록한 함수의 함숫값은 직선 [math(l)]보다 밑에 있게 되어 2는 1보다 항상 위에 있으므로

[math(\displaystyle \frac{mf(b)+nf(a)}{m+n}<f \biggl( \frac{mb+na}{m+n} \biggr) )]


위 내용을 좌표평면상에서 시각화하면 아래와 같다. [math((\rm a))], [math((\rm b))]는 각각 [math(f(x))]가 구간에서 아래로 볼록한 경우, 위로 볼록한 경우이다.

파일:namu_곡선_오목_볼록_2_NEW.svg

닫힌 구간 [math([a,\,b])]에서 연속인 함수 [math(f(x))]에 대하여 다음이 성립한다.
  • [math(f(x))]가 위로 볼록(아래로 오목)
    • [math(\displaystyle\int_a^b f(x)\,{\rm d}x > \dfrac{b-a}{2}\{f(a)+f(b)\})]
  • [math(f(x))]가 아래로 볼록(위로 오목)
    • [math(\displaystyle\int_a^b f(x)\,{\rm d}x < \dfrac{b-a}{2}\{f(a)+f(b)\})]

이를 쉽게 생각하기 위해서 [math(f(x) \geq 0)]이라는 제약을 걸고 분석을 해보자. 우선 수식

[math(\dfrac{b-a}{2}\{f(a)+f(b)\}=S)]

의 의미를 파악해보자. 이는 구간 [math([a,\,b])]에서 높이가 [math(b-a)]이고, 윗변과 아랫변의 길이가 각각 [math(f(a))], [math(f(b))]인 사다리꼴의 넓이가 된다.[3] 이 사다리꼴은 [math(x)]축, [math(x=a)], [math(x=b)], [math((a,\,f(a)))], [math((b,\,f(b)))]를 지나는 직선 [math(l)] 이렇게 네 직선으로 둘러싸인 도형이다. 또한 수식

[math(\displaystyle \int_{a}^{b}f(x)\,{\rm d}x=T)]

는 [math(x)]축, [math(x=a)], [math(x=b)], [math(f(x))]의 그래프로 둘러싸인 영역의 넓이를 의미한다.

함수가 아래로 볼록할 경우 구간 [math([a,\,b])]의 함숫값은 직선 [math(l)]보다 아래에 위치하므로 [math(S < T)], 위로 볼록할 경우 위에 위치하므로 [math(S>T)]인 것이다.

단, [math(f(x) \leq 0)]인 경우에는 [math(S)], [math(T)]를 영역의 넓이에 음의 부호를 붙인 것임에 유의하자. 이 경우에도 위 수식은 성립한다.

모든 경우가 포함된 경우에도 위 수식은 성립하며, 한 영역을 [math(f(x) \geq 0)] 혹은 [math(f(x) \leq 0)]인 구간으로 나누고 적용한 결과를 종합하면 이를 증명할 수 있다.

[math(f(x) \geq 0)]일 때 [math((\rm a))]의 아래로 볼록한 경우와 [math((\rm b))]의 위로 볼록한 경우에 대한 위 내용을 좌표평면상에서 시각화해보면 아래와 같다.

파일:namu_다항함수추론_오목볼록.svg
  • [math(f(x))]가 위로 볼록(아래로 오목)
    • [math(\displaystyle\int_a^b \{f(x)-f(b)\}\;{\rm d}x\geq\dfrac{(b-a)\{f(a)-f(b)\}}2)]
  • [math(f(x))]가 아래로 볼록(위로 오목)
    • [math(\displaystyle\int_a^b \{f(x)-f(b)\}\;{\rm d}x\leq\dfrac{(b-a)\{f(a)-f(b)\}}2)]
이는 사다리꼴이 아니라 직각삼각형과 관련이 있는데, 식이 다르지만 결국 같은 사실을 나타내고 있다. 다음 예제의 그림으로 이해해 보자.
예제 [펼치기·접기]
-----
이 내용은 2004년 수능 가형 8번에 출제되었다.
파일:2004 가 수능홀 8.png
문제의 그래프는 [math(x)]축보다 위에 있고 아래로 볼록하므로 답은 'ㄱ, ㄷ'이다. [math(\overline{\rm PQ})]의 기울기는 [math(\{F(b)-F(a)\}/(b-a))]가 아니라 [math(\{f(b)-f(a)\}/(b-a))]이므로 ㄴ은 옳지 않다.


상수함수는 오목함수이기도 하고 볼록함수이기도 하다.[4] 디리클레 함수 같은 완전 불연속함수나 바이어슈트라스 함수 같은 병리적 연속함수는 어떤 점 근방을 잡더라도 그 위에서 오목하지도 볼록하지도 않다.

4. 기타



[1] 젠센 부등식의 변수 2개일 때 형태와 같다. [2] 직접 [math(\biggl( \dfrac{mb+na}{m+n},\,0 \biggr))]을 직선 [math(l)]의 방정식 [math(y=\dfrac{f(b)-f(a)}{b-a}(x-a)+f(a))]에 대입하여 구해봐도 되지만 닮음에 의하여 [math(m:n)]으로 내분하는 점임이 명백하다. [3] 단, [math(f(a))]와 [math(f(b))] 중 하나가 0이면 직각삼각형의 넓이가 됨에 유의하자. [4] 강오목함수 혹은 강볼록함수는 아니다.

파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r34에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r34 ( 이전 역사)
문서의 r1112 ( 이전 역사)