1. 개요
連 鎖 法 則 / chain rule2. 일변수함수
겉미분, 속미분 등의 말로 배우는 '합성함수의 미분'이 바로 연쇄 법칙을 간편한 형태로 적용한 것이다.[math( f )]와 [math( g )]가 미분가능한 함수라고 하자. [math( y=f(u) )]이고 [math( u=g(x) )]일 때, [math( y )]는 [math( x )]로 미분가능하고 다음이 성립한다.
[math(\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} )]
이때 [math(\displaystyle \frac{\mathrm{d}u}{\mathrm{d}x})]를 흔히 속미분이라고 부른다.3. 다변수함수
[math( u )]가 [math( x_1, x_2, \cdots , x_n )]에 대한 미분가능한 [math( n )]변수 함수이고, [math( x_j )]가 각각 [math( t_1, t_2, \cdots , t_m )]에 대한 미분가능한 [math( m )]변수 함수이면, [math( u )]는 [math( t_1, t_2, \cdots, t_m )]에 대한 미분가능한 함수이고, 각 [math( i = 1,2, \cdots , m )]에 대하여 다음이 성립한다.
[math(\displaystyle \frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \cdots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i})]
다변수의 미분을 선형 변환 혹은 행렬로 이해했다면 다음의 버전이 가장 일반적이다.
유클리드 공간의 열린 집합 [math(X, Y, Z)]에 대해 [math(g : X \rightarrow Y)], [math( f : Y \rightarrow Z)]가 각각 점 [math(x_0 \in X)], [math(y_0 = g(x_0))]에서 미분가능할 때, [math( h = f \circ g : X \rightarrow Z)]도 [math(x_0)]에서 미분가능하고, 그 도함수는 다음을 만족시킨다.
[math( \displaystyle Dh = Df \circ Dg )]
여기서 [math(Df, Dg)]를 야코비 행렬로 보고 행렬곱을 계산하면 위의 버전을 얻을 수 있다.4. 주의점
흔히 고등학교 과정에서 나와 있는 1변수 연쇄법칙의 증명은 엄밀하지 않은 경우가 대부분이다.
[math(\displaystyle \lim_{x_1 \rightarrow x} \frac{f(g(x_1)) - f(g(x))}{x_1 - x} = \lim_{x_1 \rightarrow x} \frac{f(g(x_1)) - f(g(x))}{g(x_1) - g(x)} \frac{g(x_1) - g(x)}{x_1 - x} )]
언뜻 보면 완벽해 보이지만 이건 [math(g(x_1) -g(x))]가
도중에 0이 되는 경우는 우변의 분수식을 설명할 수 없다. 이것을 해결하기 위한 별도의 트릭을 사용하거나, 아니면 그냥 미분계수에 분수를 사용하지 않는 엡실론-델타 버전에 기대는 (즉 [math( |f(x+h) - f(x) - hf'(x)| < \epsilon h)] 이런 느낌으로) 방법이 있지만 첫번째는 번거롭고, 두번째는 고교과정 외이므로 보통 생략된다.- 첫 번째 방식을 이용한 일변수 연쇄법칙의 증명(접기/펼치기)
- 보조함수 [math(F)]를[math(\displaystyle F(y) = \begin{cases} \displaystyle \frac{f(y)-f(g(x))}{y-g(x)} & y \neq g(x) \\ f'(g(x)) & y = g(x) \end{cases} )]라 정의하자. [math(f)]가 [math(g(x))]에서 미분가능하다는 가정을 이용하면 [math(F)]의 연속성을 증명할 수 있다. 이제 위의 분수식하고 거의 흡사하지만 약간 다른 다음의 식을 생각한다.[math(\displaystyle \frac{f(g(x_1)) - f(g(x))}{x_1 - x} = F(g(x_1))\frac{g(x_1) - g(x)}{x_1 - x} )]만약 [math(g(x_1) \neq g(x))]이면 [math(F)]의 정의를 대입하면 성립하고, [math(g(x_1)=g(x))]라면 양변은 모두 0이니까 성립한다. 즉 위 식은 항상 맞으면서도, 이제는 모든 함수들이 연속이기 때문에 [math(x_1 \rightarrow x)]로 극한을 보낼 수 있다. 그러면 우변은 [math(F(g(x))g'(x) = f'(g(x))g'(x))]가 되어 증명 끝.
- 두 번째 방식을 이용한 다변수 연쇄법칙의 증명(접기/펼치기)
- 다음 일반적인 미분의 정의를 사용한다. [math( g: X \rightarrow Y)]가 [math(x_0 \in X)]에서 미분가능하다는 것은, 임의의 [math(\epsilon>0)]에 대해 [math( |g(x_1) - g(x_0) - Dg(x_0) (x_1 - x_0)| < \epsilon |x_1 - x_0| )]이 만족되는 [math(x)]의 근방이 존재한다는 것이다. 여기서 [math(Dg(x_0))]는 선형사상으로 간주. 이제 [math(y_0 = g(x_0), y_1 = g(x_1))]과 [math(h = f \circ g)]에 대해, 다음의 등식을 생각한다.[math( \displaystyle h(x_1) - h(x_0) - Df(y_0) Dg(x_0) (x_1 - x_0) = \left( f(y_1) - f(y_0) - Df(y_0) (y_1 - y_0) \right) + Df(y_0) \left(g(x_1) - g(x_0) - Dg(x) (x_1 - x_0) \right) )]임의의 [math(\epsilon_1, \epsilon_2>0)]에 대해서,[math( |f(y_1) - f(y_0) - Df(y_0) (y_1 - y_0)| < \epsilon_1 |y_1 - y_0| )]가 만족되는 [math(y_0)]의 근방을 [math(V_1)],라 하고, [math(U = g^{-1}(V_1) \cap U_1)]으로 잡자. 그러면 [math(U)] 위에서
[math( |g(x_1) - g(x_0) - Dg(x_0) (x_1 - x_0)| < \epsilon_2 |x_1 - x_0|)]가 만족되는 [math(x_0)]의 근방을 [math(U_1)][math( \displaystyle |h(x_1) - h(x_0) - Df(y) Dg(x) (x_1 - x_0) | < \epsilon_1 |y_1 - y_0| + \epsilon_2 \| Df(y_0) \| |x_1 - x_0| )]이고 특히 [math( |y_1 - y_0| \le (\|Dg(x_0)\| + \epsilon_2) |x_1 - x_0|)] 이므로,[math( \displaystyle |h(x_1) - h(x_0) - Df(y) Dg(x) (x_1 - x_0) | < \left( \epsilon_1( \|D(g(x_0)\| + \epsilon_2) + \|Df(y_0)\| \epsilon_2 \right) |x_1 - x_0| )]을 얻는다. 이제 주어진 [math(\epsilon>0)]에 대해 [math(\epsilon_1,\epsilon_2 >0)]을 적절히 잡으면, 선형사상 [math( Df(y) Dg(x) )]가 [math(h)]의 미분계수의 조건을 만족한다는 것을 증명할 수 있다.