사면체의 모습. |
1. 개요
四 面 體, Tetrahedron, Tetrahedral한 개의 꼭짓점에 세 개의 면이 만나고, 네 개의 삼각형면으로 이루어진 다면체. 가장 적은 수의 면으로 구성된 다면체인 단체(simplex)[1]로, 삼각뿔이라고도 불린다. 면들이 모두 정삼각형일 경우 정사면체라고 부른다. 정사면체 단독으로만은 정육면체와 같이 공간을 빈틈 없이 채울 수 없으나, 정팔면체의 면과 정사면체의 면을 이어붙이는 방식으로 함께 배열할 경우 공간을 빈틈 없이 채울 수 있다. 무게중심이 정육면체보다 아래에 있어서 더 안정적이다.
2. 정사면체
정다면체 Regular Polyhedron |
|
플라톤 다면체 (볼록 정다면체) |
정사면체 · 정육면체 · 정팔면체 · 정십이면체 · 정이십면체 |
케플러-푸앵소 다면체 (오목 정다면체) |
작은 별모양 십이면체 · 큰 별모양 십이면체 · 큰 십이면체 · 큰 이십면체 |
정다면체중 하나인 정사면체의 모습. |
正 四 面 體, Regular tetrahedron[2]
면들이 모두 정삼각형인 사면체를 특별히 정사면체라고 부른다. 정사면체는 정삼각뿔의 일종이다. 정사면체 다섯 개로 4차원 도형인 정오포체를 만들 수 있다. 16개로는 정십육포체를, 600개로는 정육백포체를 만들 수 있다.
2.1. 정사면체에 대한 정보
단위/특성 | 개수 | 비고 |
슐레플리 기호 | {3,3} | |
꼭짓점(vertex, 0차원) | 4 | |
모서리(edge), 1차원) | 6 | |
면(face, 2차원) | 4 | 정삼각형 |
쌍대 | 정사면체 {3,3} | |
포함 관계[3] 또는 다른 이름[4] |
정삼각뿔(Equilateral triangular Pyramid) 3- 단체(3-Simplex) 3- 반초입방체(3-Demihypercube) |
한 변의 길이가 [math(a)]인 정사면체가 있을 때
- 높이(height)[5] = [math(\displaystyle\frac{\sqrt{6}}{3}a)]
- 외접구의 반지름 = [math(\displaystyle\frac{\sqrt{6}}{4}a)][A]
- 모서리접구의 반지름 = [math(\dfrac{\sqrt{2}}{4}a)]
- 내접구의 반지름 = [math(\displaystyle\frac{\sqrt{6}}{12}a)][A]
- 총 모서리 길이(total edge length) = [math(6a)]
- 겉넓이(surface area) = [math(\sqrt{3}a^2)]
- 부피(volume) = [math(\displaystyle\frac{\sqrt{2}}{12}a^3)]≈0.1179a3
2.2. 다른 정다면체들과의 관계
- 정사면체는 특이하게도 정사면체 자기 자신과 쌍대(Dual)[8] 도형이다. [9][10]
- 정사면체의 꼭짓점에서 모서리들의 절반 지점에 있는 점들을 이은 4개의 면들로 잘라내면 정팔면체가 만들어진다.
- 정육면체의 8개 꼭지점 중에서 서로 이웃하지 않은 꼭짓점을 이은 선분으로 이루어진 도형은 정사면체이다.
- 정사면체를 단위로 해서 만들 수 있는 4차원 도형로 정오포체, 정십육포체, 정육백포체가 있다.
2.3. 여담
정다면체들 중에서 유일하게 안정적으로 세워놓았을 때 연직 방향 위를 향하는 면이 없다. 따라서 주사위를 만들었을 때 면이 아닌 꼭짓점을 기준으로 숫자를 표기하기도 한다.고등학교 기하와 벡터 내용이랑 같이 수학 영역에 수시로 등장해 학생들이 정사면체의 높이, 무게중심, 이면각[11], 넓이 등등의 정보를 머릿속으로 귀띔하게 되었다.
성냥개비 6개로 정사각형 4개를 만들라는 수수께끼가 있는데, 사면체를 만들면 된다.
3. 현실에서의 예시
- 테트라포드
- 사면체형 우유 팩. 국내에서는 커피포리가 유명하다.
- 마름쇠
- 분자
- 메테인, 실레인[12], 암모니아, 암모늄, 포스핀, 아르신[13] 이온 등 일부 4~5분자 화합물. 5분자 화합물의 경우 중심 원자를 제외한 나머지 원자들이 사면체 모양을 가진다.
- 피라밍크스
- 정사면체 주사위
[1]
유클리드 기하학에서는 3개 이하의 면으로는 절대로 다면체를 만들 수 없다.
[2]
복수는 regular tetrahedra
[3]
반드시 이 다면체를 지칭하지는 않으며, 해당 이름이 비슷하게 생긴 고르지 않은 다면체도 포함하는 경우
[4]
반드시 이 도형과 닮거나 합동인 도형을 지칭하는 이름.
[5]
한 면에서 반대쪽 꼭짓점까지의 거리
[A]
정사면체의 각 꼭짓점에서 마주보는 면에 수선의 발을 그으면, 모든 수선이 한 점에서 만난다. 밑면 높이의 일부 및 정사면체 높이의 전체를 이루는 선분으로 구성된 직각삼각형과 옆면 높이의 일부 및 정사면체 높이의 일부를 이루는 선분으로 구성된 직각삼각형은 서로 AA 닮음(직각 및 그 외의 공통각)이다. 정사면체의 이면각은 익히 알려져있다시피
[math(arccosleft(dfrac{1}{3}right))]이므로 외접구의 반지름과 내접구의 반지름은 정사면체의 높이를 3:1로 내분한다. 따라서 외접구의 반지름은 정사면체 높이의 [math(\displaystyle\frac{3}{4})]이고, 내접구의 반지름은 정사면체 높이의 [math(\displaystyle\frac{1}{4})]이다.
[A]
[8]
어떤 다면체의 꼭짓점을 면으로, 면을 꼭짓점으로 대체한 다면체를 쌍대 다면체라고 한다.
[9]
정사면체는 한 꼭지점에 세 개의 정삼각형이 만나기 때문에 {3, 3} 한 꼭지점에서 정삼각형이 세 개 만나는 도형인 자기 자신{3, 3}과 쌍대인 것은 당연하다.
[10]
정사면체 뿐만 아니라 모든 다각뿔의 쌍대 다면체 또한 자기 자신이다.
[11]
cosθ=1/3. 이 정도는 머릿속에 집어넣자.
[12]
SiH4, 규화수소
[13]
AsH3, 비화수소