1. 개요
群 論 / group theory분자 대칭(molecular symmetry)과 관련된 개념을 화학에서 군론이라는 이름으로 다루는 학문이다.
2. 상세
화학의 4대 축[1] 중 하나인 물리화학에서 양자화학을 다루고 있기 때문에 화학도들도 군론을 접할 수 있다. 하지만 물리화학에서 배우기 보다 무기화학을 배우면서 알기 시작한 경우가 많다. 왜냐면,첫째로는 분자가 갖는 여러 대칭성을 조합하여 분자의 다양한 성질을 유추하는 데 사용된다. 예를 들면 물 분자의 대칭이 어떻게 만들어 질수 있는 지 알아보고 그것을 통해 어떤 진동 운동을 할 수 있을지 예측해 보는 것이라고 할 수 있겠다. 두번째 응용으로는 바탕 함수(분자의 내용을 반영하는 함수)로 이루어진 바탕 집합들을 1차 결합하여 분자 오비탈 이론을 정성적으로 설명하는 데에 있다.
분자 오비탈 이론이 얼마나 중요한지는 두말하면 잔소리라고 할 수 있다. 분자 오비탈 이론을 통해 분광학에서 보이는 스펙트럼을 설명하기도 하고, 무기화학에서 리간드장 이론을 설명하기도 한다. 화학도들에게 중요한 점은 양자역학의 적분값을 계산하지 않고도 여러 내용을 추론 할 수 있다는 점이다! 예를 들면, 물의 바닥 상태(ground state)로부터 1차 들뜬 상태(first excited state)로의 전자 전이가 허용되는지, 허용되었다면 빛의 전기장 방향은 어느 방향으로 배위되어 있어야 하는지 등.
이게 왜 중요하냐면, 화학도들은 선형대수학과 미분방정식 혹은 공업수학을 안배우는 경우가 많기 때문에 적분값을 못 구하는 경우가 많기 때문이다. 물리학에서 군론은 선형대수학의 하위 분야에 가깝다.
화학도를 위해 변명을 하자면 화학에서 주로 다루는 착물들은 선형대수학이나 미분방정식을 다 배웠다 쳐도 기본적으로 컴퓨터로 직접 수치해석적으로 양자역학 계산을 돌리지 않으면 해를 구할 수가 없다. 화합물들이 너무 복잡하기 때문에 해석학적으로 뭔가 의미있게 수학적 결론을 도출하는 것이 불가능에 가깝기 때문이다. 답을 구하는 것은 커녕 풀면 그 답을 줄 수 있는 식만 세울 수 있어도 대단한 수준.
대학원에서 계산무기화학을 전공하고 그걸로 박사를 받아도 손으로 할 수 있는 것이 별로 없다. 오히려 화학 쪽에서는 정성적으로 접근해서 놀라울 정도로 근접한 결과를 주는 규칙들을 공부하는 것이 훨씬 유리하다.
참고로 군론이라는 이름과는 달리 실제 내용물은 표현론에 가깝다.
3. 군이 될 조건
1. 군에 포함된 원소들의 'product'는 다시 그 군에 포함되어야 한다.[3]2. 항등원에 해당하는 'identity element'가 존재한다.
3. 결합법칙이 성립한다.(교환 법칙이 성립할 필요는 없다.)
4. 모든 원소는 역원에 해당하는 'reciprocal element'를 가진다.
4. 자주 사용되는 대칭 조작
자세한 내용은 점군 문서 참고하십시오.1. E : 특별한 대칭없이 그 상태 자체에 따른 조작
2. Cn : 축을 중심으로 각도 2π/n 라디안만큼 회전하였을 때에도 대칭을 유지하는 조작
3. σ(h, d, v) : 평면을 중심으로 대칭하는 조작(h는 주축에 수직하는 평면, d는 주축을 포함하며 결합각을 이등분하는 평면, v는 주축을 포함하며 원소들을 지나가는 평면)
4. Sn : 축을 중심으로 2π/n 라디안만큼 회전하고 축에 수직하는 평면에 대칭할 때 대칭성을 유지하는 조작. 이렇게 써 놓으면 복잡해 보이지만 학부 수준에서는 그냥 Cn조작과 σh조작을 동시에 했다고 생각하면 편하다.
5. i : 중심을 기준으로 반전조작.
[1]
물리화학,
유기화학,
무기화학,
분석화학
[2]
엄밀히 말하자면 여기서 말하는 군은 가환군(아벨군, abelian group) 위에
환의 연산이 주어진
가군(module)을 의미한다. 자세한 내용은
가환대수학 문서 참조.
[3]
이는 수학에서 '집합이 연산에 대해 닫혀있어야 한다.(closure)' 라는 말에 해당된다.