최근 수정 시각 : 2023-06-03 16:35:38

대칭행렬


1. 정의2. 성질3. 예4. 관련 문서

1. 정의

대칭행렬(symmetric matrix)은 다음을 만족하는 행렬 [math(A)]를 말한다.

[math(A=A^{\sf T})]

여기서 [math(A^{\sf T})]는 [math(A)]의 전치행렬이다. 위 식을 만족하려면 [math(A)]는 정사각행렬이어야 한다.

2. 성질

실수 성분 대칭행렬은 다음 성질들을 가진다.

3.

[math(\begin{aligned}
A &= \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{pmatrix} = \begin{pmatrix}
1 & 4 & 5 \\
4 & 2 & 6 \\
5 & 6 & 3 \\
\end{pmatrix} \\
A^{\sf T} &= \begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33} \\
\end{pmatrix} = \begin{pmatrix}
1 & 4 & 5 \\
4 & 2 & 6 \\
5 & 6 & 3 \\
\end{pmatrix} \\
\therefore A &= A^{\sf T}
\end{aligned})]

4. 관련 문서