최근 수정 시각 : 2024-12-11 01:15:00

가분수

대분수에서 넘어옴

파일:나무위키+유도.png  
대분수은(는) 여기로 연결됩니다.
제네바에 위치한 분수에 대한 내용은 제네바 대분수 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
1. 개요2. 가분수와 대분수3. 가분수 용어의 기원4. 여담

1. 개요

가분수()는 분자가 분모와 같거나 분모보다 더 큰 분수를 일컫는다. 출처 반대로 분자가 분모보다 작은 분수는 진분수(眞分數)라고 한다.

보통 진분수를 배우고 나서 가분수와 대분수 개념이 등장하는데, 이때 가분수를 대분수로, 대분수를 가분수로 바꾸는 산수를 배운다.

2. 가분수와 대분수

가분수는 자연수와 진분수의 합으로 나타낼 수 있으며, 이를 자연수 옆에 진분수를 쓰는 식으로 표기한 것을 대분수(帶分數)라고 한다. 크다고 해서 大분수가 아니고, 분수가 띠를 두른 듯하다고 하여 띠 대(帶) 자를 쓴다.

전자기기에 키보드 특수문자 없이 대분수를 표기할 경우, 자연수 부분과 진분수 부분 사이에 띄어쓰기를 하는 것이 정식 표기이다. 예컨대 대분수로 1과 2분의 1을 적을라면 1 1/2라고 적으면 된다.

가분수는 대분수에 비해 계산상·표현상 훨씬 편하다. 예컨대 약분을 하거나 분수로 사칙연산, 특히 곱셈이나 나눗셈을 할 때에 대분수는 가분수로 바꿔야 계산이 훨씬 편하다.

중등수학 이후로 들어가면 곱셈기호의 무력화[1][2], 그리고 무리수 문자의 등장으로 인해 대분수 표기는 자연스레 쓰지 않게 된다.

반면 대분수는 가분수에 비해 직관적으로 크기를 가늠하기 쉽다. 예컨대 169/14는 암산하지 않고는[3] 그 크기를 가늠하기 어렵지만 이를 12 1/14라는 대분수로 표현하면 크기를 한눈에 알아보기 쉽다. 창작물에 나온 유명한 대분수의 경우 킹스 크로스 역 9와 3/4 승강장이 있는데, 9번과 10번 승강장의 사이에 있다는 것을 강조하기 위해 일부러 가분수 39/4가 아닌 대분수 9 3/4로 표현한 사례로 볼 수 있다. 영국 미국에서는 키를 잴 때도 대분수를 쓰는데 키 190cm는 미국 키로 6피트 2 1/2인치라고 쓴다.[4]

따라서 대분수는 인지수준이 낮은 시기인 초등학생 때 사용되며 중학교에 가는 순간 대분수는 푸대접 수준으로 전락하고 가분수를 쓴다. 이는 수학이라는 학문이 교육의 영역으로 들어오게 되면서 일어난 일로, 초등교육에서는 어린아이들의 인지능력이 낮음을 감안하여 추상적인 개념을 최대한 현실과 잇는데 초점을 두고 이를 나중 교육과정에서 정정하는 방식으로 짜여 있기 때문이다. 대분수도 마찬가지로 직관성을 위해 정확하지 않은 표현을 사용한 사례지만 이는 학습자가 어지간히 인지능력이 뛰어난 아이들이 아닌 이상 어쩔 수 없는 허용이라고 봐야 한다. 중학교부터 미지수 x로 대표되는 추상적 개념이 도입되기 시작하며 초등학교때는 원주율을 3.14로 근사하여 계산하다가 중학교 들어와선 원주율을 의미하는 추상적인 기호인 π로 계산하게 된다.

대학교의 일부 공학 설계 과목에서는 대분수를 쓴다. 당연히 설계도는 직관적이어야 하므로 실용성이 좋은 대분수가 선호된다.[5] 마찬가지로 원주율도 공학에서는 값을 내야 하는데 거기에 π가 섞여 있으면 곤란한 경우가 많으므로 그냥 3.14159...로 쓰는 경우도 많다. 즉, 사용 목적에 따라 다른 방법으로 수를 나타내는 것이다.

3. 가분수 용어의 기원

가분수는 한자로는 假分數, 즉 가짜 분수라는 것인데,[6] 이는 영어의 improper fraction을 번역한 것이다. 언뜻 보기에는 가짜라는 의미가 좀 이상할 수도 있는데, 이를 이해하기 위해서는 improper의 반댓말인 proper라는 단어의 용법에 대해 살펴 보아야 한다.

Proper fraction은 진분수, 즉 분자가 분모보다 작은 분수를 뜻한다. Proper라는 단어가 쓰인 용어로는 이외에도 자신이 아닌 부분집합을 의미하는 진부분집합(proper subset)이라든지, 자기 자신을 제외한 약수를 뜻하는 proper divisor 등 여럿 있다.

일반적으로 가장 많이 알려진 proper의 뜻은 " 적절한"이라는 의미인데, 여기서는 적절하다는 의미보다는 "진정한 의미의 ~" 내지는 "엄밀한 의미의~" 로의 뜻이 강하다. 네이버 영어사전 2번, 4번 항목 참고.

우리가 통상적인 의미로 쓰는, 즉 수학이 아닌 단어 자체로서 엄격한 의미에서의 fraction(분수)은 일부분, 즉 전체보다 작은 것을 의미한다. 이러한 맥락에서 fraction(분수)이라는 말은 (전체보다 작은) 일부분이 전체에서 얼마나 차지하는지를 분모와 분자의 비로서 표현한 것이다. 그렇기에 proper fraction은 "진정한 의미에서의 부분", 즉 전체(분모)보다 작은 일부(분자)를 표현하는 분수이고, improper fraction은 그에 반대되는 의미로서 그밖의 모든 분수, 즉 분자가 분모보다 같거나 커서 사전적 의미에서 벗어난 분수를 의미한다.

인터넷에 "가분수를 왜 쓰나요?"라는 질문이 상당히 많은 것을 봐도 가분수가 사전적·직관적 의미의 분수와는 다소 동떨어져 있다는 것을 알 수 있다.

4. 여담

지금은 거의 안 쓰지만 분자가 분모보다 더 크다는 점 때문에 머리가 큰 사람( 대두)을 빗대어 부르기도 한다. 1990년대에는 대두보다도 가분수라는 말을 흔히 썼다.


[1] 물론 숫자끼리만의 계산에는 곱셈기호를 계속 쓴다. [2] [math(1\dfrac12)]는 [math(1 + \dfrac{1} {2})]이므로, 대분수는 자연수와 진분수 사이의 덧셈 기호의 생략이라고 볼 수도 있다. [3] 169=14*12+1로 분해하지 않고는 [4] 이는 영미 단위계의 기반 진법이 중구난방이라 분수의 사용이 많기 때문이다. [5] 소수점을 쓰는 경우가 더 편하지만, 영미 단위계처럼 소수점을 안 쓰는 경우도 있다. [6] 이 '가'자를 (더할 가)자로('분자에 필요 이상으로 뭘 더한 분수다.' 이런 식으로) 오해하는 사람들이 종종 있는데 전혀 그렇지 않다. 거짓 가 이다.

분류