1. 개요
magnetic dipole moment · 磁 氣 雙 極 子 모멘트자기장 속에서 토크의 크기를 결정짓는 물리량을 자기 쌍극자 모멘트라 한다. 여기서 자기 쌍극자란 'N극과 S극을 갖는 작은 물체'를 말한다. 쉽게 말해 극히 작은 막대자석이라 생각하면 된다.
전류 고리 또한 자기장을 생성하므로 이에 해당하는 자기 쌍극자 모멘트를 생각해볼 수 있다.
전류 [math(I)]가 흐르는 전류 고리에 대해 자기 쌍극자 모멘트 [math(\bf m)]의 크기 [math(m)]은 다음과 같이 전류 [math(I)]와 고리의 면적 [math(A)]을 곱한 값이며, 방향은 오른손 법칙을 따른다.
[math(m=IA)]
전자기학을 배우기 전의 학부 수준 이하에서는 사각 전류 고리를 일정한 자기장 영역에 넣었을 때 받는 돌림힘을 구하면서 자기 모멘트를 정의하는 것이 일반적이다.
2. 자기 퍼텐셜의 다중극 전개
임의의 폐곡선에 선형 전류 [math(I)]가 시계방향으로 흐르는 것을 고려해보자.[1]폐곡선에 흐르는 선형 전류이므로 점 [math(\rm P)]에서의 자기 퍼텐셜은 아래와 같이 나온다.
[math(\displaystyle {\bf A}({\bf r}) = \frac{\mu_0 I}{4\pi} \oint \frac1{\xi} \,{\rm d}{\bf l'}
)]
이때 [math({\bf \xi} = {\bf r} -{\bf r'})]임을 이용하면
[math(\displaystyle
\xi^{-1} = (r^2 +(r')^2 -2rr' \cos{\theta})^{-1/2}
)]
이다. 이때 [math(r \gg r')]이라면 우변을 다음과 같이 르장드르 다항식의 생성함수 꼴로 전개할 수 있다.
[math(\displaystyle \begin{aligned}
(r^2 +(r')^2 -2rr' \cos{\theta})^{-1/2} &= \frac1{r} \sum_{n=0}^\infty \biggl( \frac{r'}r \biggr)^{\!\!n} P_n(\cos \theta) \\ &= \sum_{n=0}^\infty \frac{{(r')}^n}{r^{n+1}} P_n(\cos \theta) \end{aligned} )] |
[math(\displaystyle
{\bf A}({\bf r}) = \frac{\mu_0 I}{4\pi} \oint \Biggl[ \sum_{n=0}^\infty \frac{{(r')}^n}{r^{n+1}} P_n(\cos \theta) \Biggr] {\rm d}{\bf l'}
)]
로 전개된다. 따라서
[math(\displaystyle \begin{aligned}
{\bf A}({\bf r}) = \frac{\mu_0 I}{4\pi} \left[ \frac1r \oint {\rm d}{\bf l'} +\frac1{r^2} \oint r'\cos{\theta} \,{\rm d}{\bf l'} +\frac1{r^3} \oint {(r')}^2 \left( \frac32 \cos^2{\theta} -\frac12 \right) \!{\rm d}{\bf l'} +\cdots \right] \end{aligned} )] |
한편, 자기홀극은 존재하지 않으므로 제1항은 없어지며[2] 자기 쌍극자를 논의해야 하므로 이제부터는 제2항만 논의한다. 제2항은 그림을 참고하면 아래와 같이 바꿀 수 있다.
[math(\displaystyle \begin{aligned}
{\bf A}({\bf r}) = \frac{\mu_0 I}{4\pi} \frac1{r^2} \oint r'\cos{\theta} \,{\rm d}{\bf l'} = \frac{\mu_0 I}{4\pi} \frac1{r^2} \oint (\mathbf{\hat r} \boldsymbol{\cdot} {\bf r'}) \,{\rm d}{\bf l'} \end{aligned} )] |
[math(\displaystyle \begin{aligned}
{\bf A}({\bf r}) = \frac{\mu_0 I}{4\pi} \frac1{r^2} \oint (\mathbf{\hat r} \boldsymbol{\cdot} {\bf r'}) \,{\rm d}{\bf l'} = \frac{\mu_0}{4\pi} \frac{I}{r^2} \biggl( I \iint {\rm d}{\bf a} \biggr) \!\times \mathbf{\hat r} \end{aligned} )] |
위에서 나온
[math(\displaystyle
I \iint {\rm d}{\bf a} = I{\bf a} = {\bf m}
)]
을 자기 쌍극자 모멘트라 정의한다. 이때, 벡터 넓이의 방향은 오른손 법칙을 따른다.
위의 경우는 가장 간단한 선형 전류에 대한 논의였고, 일반적인 전류밀도 [math({\bf J}({\bf r'}))]을 가지는 계에 대한 자기 쌍극자 모멘트는
[math(\displaystyle
{\bf m} = \frac12 \int {\bf r'} \times {\bf J}({\bf r'}) \,{\rm d}V'
)]
가 된다. 다만, 선형 전류인 경우에 비해 증명하기가 꽤 까다로우므로 증명은 생략한다.
3. 자기 쌍극자의 물리량
3.1. 퍼텐셜과 자기장
위의 논의에서 자기 쌍극자에 의한 자기 퍼텐셜은
[math(\displaystyle \begin{aligned}
{\bf A}({\bf r}) = \frac{\mu_0}{4\pi} \frac1{r^2} \left( I \iint {\rm d}{\bf a} \right) \!\times \mathbf{\hat r} = \frac{\mu_0}{4\pi} \frac{{\bf m} \times \mathbf{\hat r}}{r^2} \end{aligned} )] |
[math(\displaystyle \begin{aligned}
{\bf B} = \boldsymbol{\nabla} \times {\bf A} \quad \to \quad {\bf B} = \frac{\mu_0}{4\pi r^3} [ 3({\bf m} \boldsymbol{\cdot} \mathbf{\hat r}) \mathbf{\hat r} -{\bf m} ] \end{aligned} )] |
|
3.2. 힘과 돌림힘, 에너지
자기 쌍극자가 자기장 내에서 받는 힘은 아래와 같이 표현된다.[math(
{\bf F} = \boldsymbol{\nabla} ({\bf m} \boldsymbol{\cdot} {\bf B})
)]
자기 쌍극자 모멘트가 일정한 자기장 [math( {\bf B} )] 속에 놓이면, 돌림힘을 받게 되며 아래와 같이 표현된다.
[math(
\boldsymbol{\tau} = {\bf m} \times {\bf B}
)]
자기 쌍극자 모멘트가 일정한 자기장 [math({\bf B})] 속에 놓였을 때 가지는 에너지는 다음과 같다.
[math(
U = -{\bf m} \boldsymbol{\cdot} {\bf B}
)]